

Deep Q-Learning for the Management of
Distributed Satellite Systems
RMIT School of Engineering | Aerospace Faculty
Research Report

Authors

Jay Dickson | s3719855

Jeremy Bloor | s3787343

Supervisors
Dr. Andoh Afful

Professor Jennifer Palmer

Research Report. Jeremy Bloor | Jay Dickson 2

Executive Summary
The focus of this project is to effectively manage Distributed Satellite Systems (DSS) in Low Earth
Orbit (LEO) using Artificial Intelligence (AI) algorithms such as Deep Q-Learning Networks (DQN)
to achieve a mission. The aim of this project is to access the feasibility of using DQN for autonomous
management of DSS in a simulated environment. Therefore, the objectives of the project are to create
a DQN agent that can independently follow a leader satellite and avoid hazards in a two-dimensional
environment.

Python was chosen as the programming language to code and train the model as it has powerful
libraries tailored for AI creation. A detailed literature review and methodology were carried out to
ensure the project took an informed approach to solving the problem.

However, several challenges and roadblocks were experienced during the completion of the project
such as long training times and the need for large computational resources. This is due to the
limitations introduced as the iterative coding approach was impacted by long training times and
complication with environmental modelling. As a result, the model demonstrated a random reward
distribution throughout training, implying no model improvement occurred.

Following the unsuccessful completion of this project, several recommendations can be made to aid in
further research. These are to understand the Markov Decision Processes deeper to better define the
environment and include additional computational recourses in future projects to speed up training
times.

Research Report. Jeremy Bloor | Jay Dickson 3

Table of Contents
Executive Summary .. 2

1. Introduction ... 4

2. Background and Literature Review 4

2.1 Distributed Satellite Systems 4

2.2 Resident Space Objects 4

2.3 Coordination and Collision 5

2.4 Deep-Q Network 5

2.5 Gap Analysis ... 5

2.6 Objectives ... 6

3. Methodology ... 6

3.1. Overview .. 6

3.2. Problem Formulation 6

3.2.1. State Representation 6

3.2.2. Action Space 7

3.2.3. Reward Structure 7

3.3. Double Deep Q-Network (DDQN) Design
 .. 7

3.3.1 Network Architecture 7

3.3.2 Learning Algorithm 7

3.3.3 Hyperparameters 8

3.4 Simulation Environment Setup 8

3.4.1 Satellite Models 8

3.4.2 Scenario Configuration 8

3.4.3 Evaluation Metrics 9

3.5 Experimental Setup 9

4. Scope and limitations 9

5. Results ... 9

6. Discussion ... 10

7. Recommendations and Future Work 10

8. Conclusion .. 10

References ... 12

Appendix 1- Contribution Table 14

Table of Figures
FIGURE 1: NEURAL NETWORK ARCHITECTURE OF THE

DOUBLE DEEP-Q LEARNING MODEL 7
FIGURE 2: DSS CONFIGURATION 8
FIGURE 3: TRAINING CONFIGURATION 9
FIGURE 4: REWARD PROGRESS FOR EACH EPISODE 10
FIGURE 5: LOSS FOR EACH EPISODE 10

Table of Tables
TABLE 1 - HYPERPARAMETERS

Table of Equations
EQUATION 1 - STATE SPACE OF THE MODEL 7
EQUATION 2 - KINEMATIC EQUATION 7
EQUATION 3 - ACTION SPACE 7
EQUATION 4 - OBJECTIVE REWARD FUNCTION 7
EQUATION 5 - SPARSE REWARD FUNCTION 7

Research Report. Jeremy Bloor | Jay Dickson 4

1. Introduction
Distributed Satellite Systems (DSS) are low Earth orbit
(LEO) missions that consist of two or more satellites
working together to achieve a given mission that
would otherwise be infeasible for a traditional
monolithic satellite. However, as LEO becomes
increasingly congested with debris from past space
missions and increasing numbers of smaller satellites,
new methods of managing these interconnected
satellite systems must be devised [1]. One method to
address this is with improved autonomy to manage
each satellite and groups of satellites together to better
achieve a mission [2] [3]. An innovative technique
commonly used for control problems in robotics comes
from Artificial Intelligence (AI) known as Deep
Reinforcement Learning (DRL) such as Deep Q-
Learning Networks (DQN) [4]. This combines the
benefit of Deep Learning (DL) and Reinforcement
Learning (RL) to achieve complex outcomes to
complex inputs. By applying DQN to coordinating
multiple satellites in real time, a large increase in
capability can be achieved. The aim of this project is to
access the feasibility of using DQN for autonomous
management of DSS. To achieve this, the objectives of
the project are to create a DQN agent that can act
independently to follow a leader satellite and avoid
obstacles. Due to the complexity, time constraints and
computation power required to implement a DQN, no
breakthrough results were achieved but with more time
and resources a solution could likely be attained.

2. Background and Literature Review
2.1 Distributed Satellite Systems
The space environment has begun to be transformed by
the deployment of DSS which are replacing older,
static monolithic satellites due to the former’s reduced
size and weight alongside capabilities for redundancy
and improved coverage. Many government and
military projects are utilising constellations of ten or
fewer satellites for missions rather than one large
satellite. This is because larger numbers of small
satellites can cover a greater area and are lighter and
thus cheaper to launch into orbit. Additionally, if one
satellite fails the mission can still be completed. These
smaller satellites are often referred to as ‘CubeSats’ as
they are made up of 10×10×10-cm cubes, each of
which is dubbed a U as a measure of size. For
example, a ‘12U’ CubeSat has a volume of 12,000cm3.
Traditional monolithic systems are made up of several
larger satellites such as GPS by the US government,
Galileo by ESA and GLONASS for Russia. However,
corporations aim to massively increase the number of

satellites in orbit with SpaceX being the forerunner,
currently orbiting 1,700 satellites in orbit with a
planned constellation of 12,000 satellites. Amazon is
also planning a constellation in the thousands and
China’s SatNet, Guowang is planning a 13,000-
satellite constellation [1] [5] [6].

DSS are categorised into four main categories:
constellation, train, fractionated and federated [7].
Constellation or swarm systems tend to be large,
loosely coordinated formations of satellites. An
example of a constellation is Starlink which is operated
by SpaceX. They manage satellites with coverage of
the Earth’s surface used to provide internet service
globally. Train or leader/follower arrangements
normally are systems of five or fewer satellites where
one satellite leads the other satellites in a particular
orbit. Currently such strategies are used for Earth
observation or to test reliance upon autonomous
navigation and coordination systems such as in the
case of NASA’s Starling constellation [8]. Fractionated
systems are comprised of groups of satellites, each of
which performs a different task to achieve an overall
mission. For example, one CubeSat generates power
and provides it to several other ‘observation’ CubeSats
that have cameras onboard and send data to a
‘communications’ CubeSat that has an antenna array
which relays the data collected. Federated systems are
groups of satellites which form in space locally to aid
each other in achieving their goal. A method of
organising federated systems is via a ‘market’ amongst
them used to place ‘wagers’ to determine which can do
what at different time intervals.

2.2 Resident Space Objects
Resident Space Objects (RSOs) are objects in the
space environment. They include operational satellites,
derelict satellites, and natural or artificial debris from
past space missions and asteroids. As the number of
operational satellites grows, so too does the risk of an
accident. SpaceX filed a report in June 2023 with the
United States Federal Communications Commission
(FCC) claiming that 25,000 manoeuvrers were
conducted across their Starlink constellation to avoid a
collision [1]. The risk of collision exponentially grows
as across time as more satellites are added LEO.

If RSOs of sufficient size collide, a cascade of further
collisions could occur. This effect is known as Kessler
Syndrome. The effect of such a cascade event could
limit Earth operations for hundreds of years. The
Kessler syndrome is named after NASA scientist
Donald Kessler who predicted a possible scenario in
LEO whereby the amount of debris accumulates

Research Report. Jeremy Bloor | Jay Dickson 5

quicker than atmospheric drag can deorbit the objects
[5] [9]. RSO debris range in size and number from
36,500 objects 10 cm wide to 130 million pieces 1 cm
or smaller [10]. Due to the speeds that these objects
circle the Earth, the potential for damage is high for
satellites of any size. Clean-up efforts are limited in
scope and scale as the objects left in space are owned
by the country that left them there limiting cross nation
efforts.

2.3 Coordination and Collision
As large numbers of satellites are deployed, they must
also be controlled and managed to avoid hazards and
to reposition to better achieve their given mission.
Currently human operators comprise the main check if
a satellite system will collide with RSOs based off US
government data such as SpaceTrack. A possible future
solution is system autonomy used to locally track and
coordinate avoidance of debris via onboard sensors
before relaying the orbit change information to a
ground station. This autonomy would allow for quicker
response times from multiple satellites that are part of
a constellation and relieve the coordination capacity
needed on the ground.

Partial low-level autonomy is included in most space
systems due to bandwidth limitations and
communication delays [11] [12]. Cramer, et al., in [8]
outline when it is prudent to apply autonomous
systems. They clarify that response time; performance
improvement and risk awareness are significant
considerations when choosing to implement autonomy.
Araguz, et al., in [7] outline the key issues that
autonomy can solve. They list mission robustness and
tolerance to failures, improved data return, reduced
visibility, and communication delays. All are
significant considerations in the deployment of DSS
formations and as such the application of robust
autonomy is of paramount importance if they are to
succeed at scale.

2.4 Deep-Q Network
To achieve the task of locally computing trajectories
and repositioning, AI could be used. AI systems have
progressed at a rapid rate in recent years, allowing for
algorithms that can handle complex environments and
produce complex actions as a response. Satellite
formations are comprised of multiple individual
satellites so the problem can be considered multi-agent
[13] [14].

In the realm of satellite control and AI, there is a
growing interest in leveraging AI techniques, notably
RL, to facilitate the coordination of multiple satellites.

RL is recognized for its capacity to train agents
through a reward-based system, making it particularly
relevant for complex control scenarios where satellites
must interact with their environment [4]. One
prominent approach within RL is Q-learning, which
employs a lookup table and the Bellman equation [15]
to make decisions based on the input states [16] [17].
The use of the Bellman equation allows for an estimate
of the best action given a set of environmental
parameters [18]. This process is expanded with DL,
which replaces the table with a neural network
expanding the number of state variables it can handle
[4].

Within the training process, the concept of exploration
vs exploitation plays a pivotal role, this is represented
through the hyperparameter “epsilon” [2]. Higher
epsilon values encourage agents to explore their
environments by taking more random actions, while
lower values prompt agents to exploit known pathways
[2]. As epsilon decreases the training continues and so
the agent explores less. The rate at which epsilon
decreases is determined by a decaying exponential
function that decreases each training cycle (episode).

To determine if training is completed, a ‘loss’ value is
calculated. Loss is the measure of how close the
predicted reward is to the actual reward gained [15]
[19]. At the beginning of training the loss is high as the
predicted rewards is far from the expected outcome but
as training progresses, loss reduces. A common method
for determining loss is the mean squared error function
which uses the average squared difference between the
predicted reward value and the actual reward value to
qualitatively find the difference. Another commonly
used method is the Huber Loss which is less
influenced by outliers and so can be a better solution in
some cases.

In a bid to enhance the stability of results achieved
through DQNs, the concept of Double Deep Q-
Networks (DDQNs) has been introduced. DDQNs
utilize a secondary target network to assess Q-values
before the primary Q-network's weights are updated, a
strategy aimed at achieving more consistent and
reliable results [4]. The target network is updated
strategically at later stages in the training process,
avoiding premature influence on the primary network.

2.5 Gap Analysis
The research completed in the field of LEO systems
utilising autonomy is only part way in applying current
and newly developed research from the field of AI.
Many space missions conducted beyond Earth’s orbit
utilise lower-level autonomy such as the Voyager

Research Report. Jeremy Bloor | Jay Dickson 6

probe. However, these autonomous tasks primarily
entail simple, pre-planned tasks. Deep space
essentially empty and so mostly static, while the LEO
environment is continually changing. Therefore, past
autonomy methods, while useful must be built upon to
tackle the LEO environment. For DSS to be successful
and to scale effectively, autonomy must be created for
each unit and between each unit to allow the system to
function [20]. This will achieve a newer level
autonomy. However, several conditions must be
considered before better autonomy can be achieved:
communication, collisions, and manoeuvring.

Herein focus primarily on the coordination to avoid
debris and to better achieve the ongoing mission via
manoeuvring. While communication between satellites
and the ground stations is important, this is a sperate
problem and so is not considered in this report. RSOs
pose a large threat to DSS operations due to the ever-
increasing number of new satellites, continuous levels
of derelict satellites, debris and currently operating
satellites. Manoeuvring multiple satellites in a timely
manner while still achieving continuous operations for
the required task would allow for a large leap forward
in operational capability. For EO as an example, a
phenomenon might be of interest in a different orbit
trajectory, either inclination or azimuth, requiring the
formation to reposition so it can collect data. As
bushfires become a larger issue due to climate change,
the tools available to monitor developing situations at a
quicker rate will in turn allow quicker responses from
emergency services. Developing autonomy to achieve
this complex task for repositioning satellites while still
in orbit will advance satellite capabilities dramatically
while also saving time and cost by removing the need
for additional satellites [3].

While AI has developed to a high capability for new
and emerging problems, fewer applications have been
made in the environment of space. Primarily RL has
been used to simulate orbit manoeuvres but has not
been used to control large systems of CubeSats [21].
This is due in part to the long training times required
for RL and the large state spaces characteristic of DSS
in LEO. DSS can be classes as a multi-agent problem
due to the interaction of multiple ‘agents. Xie et al [4]
demonstrates the use of DQN to solve this multi-agent
problem by considering them in pair wise
relationships. This reduces the computation time by
considering the problem piece wise as well as using
DL to make use of larger input states. Furthermore,
Xie et al [4] demonstrates a target zone that the agent
should aim for with a threat zone for the agent to
avoid. By utilising the target zone, the agent can follow

another agent at a distance and avoid obstacles that
move into its threat zone. By applying DQN to DSS
the issue of large inputs states and larger orbital
systems can be addressed.

2.6 Objectives
The main objectives of this project are to:

1. Create a DQL Agent that can act
independently to follow a leader node at a set
distance and angle.

2. Have the Agent avoid obstacles and other
hazards efficiently.

3. Show that a collection of Agents can act to
optimise a formation of satellites while
performing autonomous tasks.

4. Allow the formation to be managed through
ground commands.

For DSS to be effective, the agents need to coordinate,
avoid collisions, and complete tasks. The agent needs
input data from the environment which it can then use
to learn how it should act towards achieve its goal.
Using this environmental data, the agent can be trained
to avoid certain objects such as debris and to follow
objects such as the lead satellite. By combining all
these attributes, a satellite system should be able to act
autonomously in a simulated environment to achieve a
given mission.

3. Methodology
3.1. Overview
This section presents the methodology for
implementing a DDQN algorithm tailored for the
purpose of formation control and obstacle avoidance in
multi-agent satellite systems. The following
subsections detail the problem formulation, algorithm
design, and simulation environment setup.

Fundamentally, the method is based around the theory
of Markov Decision Processes. This academic area
provides a framework to develop the most significant
parameters needed for Deep Q-Learning such as the
state space, action space and reward structure.

3.2. Problem Formulation
3.2.1. State Representation

The model's state representation consists of all the
information the agent will have at a given step to make
decisions with.

The information comes from the environment, which
for any given episode will contain the agent which is
dynamic as well as the target and a single obstacle,

Research Report. Jeremy Bloor | Jay Dickson 7

these are stationary and randomly initialized randomly
at the start of each episode. The state space for the
model is defined as follows:

! = #$! , &! , '"! , '#! , $$, &$(
!,

Equation 1 - State Space of the Model

where !!, "! are the relative position of the agent with
respect to the target, #"!, #"! which is the relative
velocity of the agent with respect to the target and !#,
"# which is the relative position of the agent with
respect to the obstacle. This state is updated for each
time step (t) in the episode.

3.2.2. Action Space

The action space represents the possible choices the
model can make at a given time step. This is a discrete
representation of the possible actions.

This is determined based upon the agent's discrete
kinematic equation combined with the obstacles. The
complete kinematic equation is defined below:

⎣
⎢
⎢
⎢
⎢
⎡
$!"#
%!"#
&$,!"#
&&,!"#
$',!"#
%',!"#⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡1 0 -. 0 0 0
0 1 0 -. 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 -. 0 0 0
0 1 0 -. 0 0⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
$!
%!
&$,!
&&,!
$',!
%',!⎦

⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎡0 0
0 0
1 0
0 1
0 0
0 0⎦

⎥
⎥
⎥
⎥
⎤

01$1&2

Equation 2 - Kinematic Equation

Given this structure the action space is defined as:

 3 = 41$, 1&6 ∈
[0,0], [−2,0], [−1,0], [1,0], [2,0], [0, −2], [0, −1], [0,1], [0,2],

Equation 3 - Action Space

 where $", $$ is the formation control command.

3.2.3. Reward Structure

The reward function serves to track the "value" of a
given state. The actual value is somewhat irrelevant
with the significance being how it changes over time.
The reward ensures that the agent gets feedback on its
actions and can thus optimize its performance.

The model relies on a reshaped reward function. This
is to say that it not only gets rewarded for the outcome
of a given episode but is also rewarded continuously
throughout the episode. This is done to ensure the
reward is not sparse and that the model has an idea of
how a given action-state pair performs. This is
essential during the learning process.

The reward function for outcomes is defined below:

<(>) = @
2, if finish
−2, if collision
−2, if out of range
0, otherwise

 

Equation 4 - Objective Reward Function

and the reward function for the sparse rewards:

!(#, %, #′) =)
−+,(#′) + ,(#), if ,! > 20safe
−+,(#′) + ,(#) + +,!(#′), if ,! > 20safe
−,!(#) + 2(1 − +)0safe, if ,! ≤ 20safe

Equation 5 - Sparse Reward Function

where, % is the state at step &, ' is the action at step t
and %′ is the state at step & + 1. The coefficients + and
,%&'(describe the value placed on future rewards and
the safe distance to the target respectively. Finally, the
functions -(%), -(%′), -)(%) and -)(%′) represent the
agent’s relative position to the target and its relative
position to the obstacle. This is determined for the
current step and the next step.

The two functions together allow for the calculation of
the total reward for a given step.

3.3. Double Deep Q-Network (DDQN) Design
3.3.1 Network Architecture

The network structure is designed so that it can
manage the complexities of the problem. The model
has a total of five layers. One input, one output and 3
dense fully connected layers.

Input (State size: 6)
∘ ∘ ∘ ∘ ∘ ∘
↓ ↓ ↓ ↓ ↓ ↓

Hidden Layer 1 (256 nodes) (Tanh)
∘ ∘ ∘ ⋯

↓ ↓ ↓ ↓ ↓ ↓
Hidden Layer 2 (256 nodes) (Tanh)

∘ ∘ ∘ ⋯
↓ ↓ ↓ ↓ ↓ ↓

Hidden Layer 3 (128 nodes) (Tanh)
∘ ∘ ∘ ⋯

↓ ↓ ↓ ↓ ↓ ↓
Output Layer (Action size: 9) (Linear)

∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘

Figure 1: Neural network architecture of the Double Deep-Q Learning
model

3.3.2 Learning Algorithm
3.3.2.1 Experience Replay
Experience replay is an integral mechanism in DQN
that enhances both data efficiency and training
stability. The algorithm stores tuples of past
experiences, including state, action, reward, next state,
and a 'done' flag, in a replay buffer. During the training
process, mini-batches of these stored experiences are
randomly sampled to update the Q-values. This
approach serves two primary purposes: it increases

Research Report. Jeremy Bloor | Jay Dickson 8

data efficiency by reusing each experience for multiple
updates, and it enhances stability by breaking the
temporal correlation in the sequence of observations
meaning that the agent isn’t trained too narrowly on
data as further steps are based on previous steps.

3.3.2.2 Target Network Updates
To further stabilize the training process, DQN employs
the concept of a target network. This network is
essentially a clone of the primary Q-network but is
updated less frequently. By using the target network to
provide a more stable and consistent goal for Q-value
updates, the overall stability of the training process is
enhanced.

3.3.2.3 The Bellman Equation
DDQN improves upon DQN by employing a double
Q-learning technique to reduce the overestimation bias
associated with Q-value estimates. In DDQN, the
action that maximizes the Q-value is selected by the
primary network, but the evaluation of its Q-value is
performed by the target network. The updated Q-value
is calculated using the Bellman equation:

Target = < + E ⋅ Gtarget HI(, argmax)Gprimary(I(, 3)J

Equation 6 - Bellman Equation

In this equation, the Target represents the goal for the
Q-value to update to. R is the immediate reward, + is
the discount factor that modulates the influence of
future rewards, and s' is the next state.

3.3.2.4 Optimization Techniques

The network parameters are updated using the Adam
variant of gradient descent. Adam is favoured for its
adaptive learning rate capabilities, which are
particularly beneficial for navigating the high-
dimensional parameter spaces encountered in DQN
models.

3.3.3 Hyperparameters

3.4 Simulation Environment Setup
3.4.1 Satellite Models

The simulation is based on a simplified two-
dimensional Cartesian coordinate system, focusing
primarily on the kinematic aspects of satellite motion.
This planar model allows for the simulation of a flat
orbit around a central gravitational body, serving as a
computationally efficient approximation for satellite
behaviour.

3.4.2 Scenario Configuration

The model focuses on scenarios involving a single
satellite agent, which is tasked with maintaining
formation with a leader node while avoiding space
debris. The leader node serves as a reference point, and
the agent's objective is to maintain its relative position
to this leader as seen in Figure 2 below.

Figure 2: DSS configuration

In each scenario, there are two primary entities: the
agent satellite and the leader node. Both satellites have
predefined initial positions and velocities. The leader
node follows a predefined trajectory, which the agent
satellite aims to mirror while avoiding obstacles.

The primary focus is on maintaining a specific
formation with the leader node, typically defined by a
set distance and angle relative to the leader's position.
The agent uses its control mechanisms or actions to
adjust its position and velocity to achieve and maintain
this formation.

Stationary space debris serves as the main type of
obstacle in these scenarios. Given the two-dimensional
nature of the model, the debris is represented as a
circle within the orbital plane, which the agent must
navigate around.

HYPERPARAMETER VALUE DESCRIPTION

GAMMA

0.95 The discount factor used to balance immediate and future rewards.
Values range from 0 to 1. A high value like 0.95 emphasizes the
importance of long-term rewards.

EPSILON

1 Initial exploration rate. This determines the likelihood of taking a
random action. A value of 1 means the agent will always explore
initially.

EPSILON MIN

0.01 Minimum exploration rate. As learning progresses, epsilon
decreases but won't go below this value. This ensures some level of
exploration continues.

EPSILON DECAY
RATE

10 Number of episodes to decay epsilon. This sets how often the
exploration rate will be updated.

EPSILON DECAY

0.01 The value epsilon decays by. This is a small value to gradually
decrease the exploration rate.

LEARNING RATE

0.01 The learning rate used in the Q-learning update. It determines the
weight given to new updates.

NETWORK
REPLACE

2000 Number of steps before replacing the target network. The target
network is updated to match the weights of the main Q-network
every N replace steps.

BATCH SIZE

32 The number of experience samples from the replay memory that are
used for training the Q-network in each iteration.

MEMORY

100000
(max length)

A deque data structure with a maximum length of 100000. It is used
for experience replay, storing tuples of (state, action, reward,
next_state, done) for training.

Research Report. Jeremy Bloor | Jay Dickson 9

Figure 3: Training configuration

3.4.3 Evaluation Metrics

The primary metrics used for evaluating the
performance of the Deep Q-Network (DQN) model in
managing the satellite formation are loss and reward
values. These metrics serve as indicators of how well
the satellite agent is learning to achieve its objectives,
which include maintaining a specific formation with
the leader node and avoiding obstacles like space
debris.

3.4.3.1 Loss Values

The loss values represent the difference between the
Q-values predicted by the DQN and the actual Q-
values calculated based on rewards received and future
state estimates. A decrease in the loss value over time
suggests that the model is learning to better
approximate the optimal Q-function. Monitoring loss
values is crucial for understanding how well the neural
network is being trained to estimate future rewards.

3.4.3.2 Reward Values

The reward values indicate the immediate benefit the
agent receives from taking specific actions in
particular states. The rewards are designed to reflect
real-world objectives, such as maintaining a specific
distance and angle relative to the leader node and
avoiding collision with obstacles. An increase in the
cumulative reward over time implies that the agent is
learning to take more optimal actions to meet its
objectives.

3.5 Experimental Setup

To achieve the objectives, a range of software tools
and cloud-based computing resources was utilized.
Python was selected as the primary programming
language because of its wide-ranging applications in
both machine learning and scientific research. This
language provided the foundational base for the
computational tasks. Building upon this, TensorFlow
was employed as the machine learning framework.
TensorFlow was ideal for constructing and training the

DQN model due to its highly optimized libraries
tailored for machine learning tasks.

For the visualization aspect of the experiment, Pygame
was chosen for rendering the training visuals. This
allowed for the effectively display of the environment
in which the satellites operated, providing valuable
visual feedback. In addition, NumPy was used for
several numerical computations and data manipulation
tasks.

All simulations and training processes were executed
on Paperspace, a cloud computing platform known for
its high-performance capabilities. This service allowed
the models to run through Jupyter Notebooks and gave
access to GPUs and memory capacity that would not
have been accessible otherwise.

4. Scope and limitations
The main constraints of the project were time and
computational resources. Running the model on cloud-
based infrastructure took approximately 30 hours, and
the duration was even longer when using personal
devices for testing, as the aim was to minimise cloud-
computing costs. These time constraints hindered
progression due to the inability to engage in iterative
problem-solving effectively making the
troubleshooting of implementation issues more
challenging.

Additionally, due to these limitations, the scope of the
project was narrowed to focus only on a 2D
environment with a single agent. While this
simplification enabled progress to occur, it also posed
limitations on the applicability of the findings.
Specifically, the reduced scope doesn't fully capture
the complexities of orbital dynamics, which could
impact the generalisability of the model to real-world,
three-dimensional space scenarios.

5. Results
The project faced challenges in gaining momentum,
primarily due to the realisation that many of the initial
approaches were either unfeasible or too complex to
implement within the constraints. As it stands, the
project did not yield a viable model for satellite
formation control using Deep Q-Learning. The
statistical analysis underscored this outcome with the
reward for the most recent model returning a P-value
of approximately 1, this indicates that the data was
randomly distributed. This suggests that the model did
not learn any meaningful pattern or strategy for
achieving its objectives, casting doubt on its current
effectiveness and applicability.

Research Report. Jeremy Bloor | Jay Dickson 10

Figure 4: Reward progress for each episode

The reward graph represents the cumulative reward
gained per training cycle or episode as seen in Figure
4. Each episode the reward gained is governed by the
reward function outlined in reward function equation.
This function maps the actions in the environment to
rewards or penalisations and should trend upwards to
show that the agent is improving at accumulating more
reward with some variation. However here it is flat
meaning the agent didn’t learn anything meaningful.

Figure 5: Loss for each episode

The loss function represents the model's accuracy. It is
evaluated based on comparing the prediction the model
makes with the actual result. This is calculated with the
mean squared error function which uses the average
squared difference between the predicted reward value
and the actual reward value to determine the loss.

6. Discussion
This project did not determine whether DQL can serve
as a viable method for autonomous satellite
management. Overall, the approaches taken early in
the project were not viable. As iteration is difficult to
do regularly, evaluating how inefficiencies were being
introduced was problematic. A balance was struck
between changing a small enough set of variables to
identify which one of them caused the problem, while
also reducing the number of times the full model had
to be run. This proved to be one of the most difficult
parts of troubleshooting.

Since concluding this project, several errors have been
identified in the implementation. One of which is that
the action values were not correctly implemented.
These values are meant to be passed into the kinematic
equation to then determine the agent's movement but
were instead represented as velocity pairs. The near
perfect distribution of the reward values also implies
that the model is not correctly acting on its model.
Possibly a result of the action value mishap but it could

also be a separate error that was never identified, as
this issue seemed to have been the main prevailing
problem, even during separate tests with a different
model.

The results clearly show no improvement in the
model's performance. All prior models also notably
performed worse than the newest model. This implies
that the most recent approach was improving the
performance but had yet to be implemented fully.

The results would show an increase in the reward and a
drop in the loss if the model was improving. This is not
seen and so it can be concluded that the model did not
learn well.

Overall, the results do not support the outlined
hypothesis that DQL can serve as a viable method for
distributed satellite management.

7. Recommendations
Moving forward, several actionable recommendations
can be made that can significantly expedite progress in
this research area.

Firstly, diving deeper into the fundamentals of Markov
Decision Processes is highly recommended. This
framework provides a systematic, mathematically
rigorous way to define state space, action space, and
reward function, focusing on this avenue will ensure
the model is well defined.

Further, caution should be taken when contemplating
an increase in environmental complexity. While this
may seem like a logical step for improving the model,
it could exponentially amplify the number of state
variables, adding complexity that may become
unmanageable. Any increase in complexity would also
necessitate a thorough re-evaluation of the associated
Markov Decision Process to adapt it to the new set of
kinematic conditions.

Finally, investing in more powerful computational
resources should be a priority, as it will accelerate both
the development and validation processes. This is due
to most of the work revolving around the need to
develop and train neural networks. These networks are
complex and time consuming to develop. Initially it
was assumed that such recourses were freely available
and ready to be used but these resources were limited
for use by postgraduate students. The solution was to
run the model on the cloud-computing platform
Paperspace, this however involved a monetary cost.

Research Report. Jeremy Bloor | Jay Dickson 11

8. Conclusion
In summary, despite encountering various challenges and ultimately not achieving success in the project, the
knowledge gained, and suggestions put forward serve as a valuable starting point for future research. Most importantly
concentrating on the theoretical aspects of Markov Decision Processes, which can lead to the development of robust
and precisely defined models. Additionally, prioritizing computational resources and optimizing the model's
exploration in complex environments is crucial. Although this area presents numerous difficulties, it also presents
significant opportunities for making meaningful advancements. Through the insights highlighted, a worthwhile
contribution has been made to the ongoing and future investigations in this field.

Research Report. Jeremy Bloor | Jay Dickson 12

References

[1] T. Pultarova, “SpaceX Starlink satellites had to make 25,000 collision-avoidance maneuvers in
just 6 months — and it will only get worse,” Space.com, 7 July 2023. [Online]. Available:
https://www.space.com/starlink-satellite-conjunction-increase-threatens-space-sustainability.
[Accessed 20 September 2023].

[2] K. Doshi, “Reinforcement Learning Explained Visually (Part 3): Model-free solutions, step-by-
step,” Medium, 31 October 2020. [Online]. Available:
https://towardsdatascience.com/reinforcement-learning-explained-visually-part-3-model-free-
solutions-step-by-step-c4bbb2b72dcf. [Accessed October 2023].

[3] E. Lagona, S. Hilton, A. Afful, A. Gardi and R. Sabatini, “Autonomous Trajectory Optimisation
for Intelligent Satellite Systems and Space Traffic Management,” Acta Astronautica, pp. 1-1,
2022.

[4] N. Xie, Y. Hu and . L. Chen, “A Distributed Multi-Agent Formation Control Method Based on
Deep Q Learning,” Frontiers in Neurorobotics, vol. 16, 2022.

[5] M. Wall, “Kessler Syndrome and the space debris problem,” Space.com, 15 July 2022. [Online].
Available: https://www.space.com/kessler-syndrome-space-debris. [Accessed 20 September
2023].

[6] A. Jones, “China is developing plans for a 13,000-satellite megaconstellation,” SpaceNews, 21
April 2021. [Online]. Available: https://spacenews.com/china-is-developing-plans-for-a-13000-
satellite-communications-megaconstellation/. [Accessed 20 September 2023].

[7] C. Araguz, E. Bou-Balust and E. Alarcon, “Applying Autonomy to Distributed Satellite
Systems: trends, challenges and future prospects,” Technical University of Catalonia, pp. 1-1,
N-A.

[8] N. Cramer, D. Cellucci, C. Adams, A. Sweet, H. Mohammad and J. Frank, “Design and Testing
of Autonomous Distributed Space Systems,” in 35th Annual Small Satellite Conference, Moffett
Feild, 2021.

[9] D. J. Kessler and B. G. Cour-Palais, “Collision frequency of artificial satellites: The creation of
a debris belt,” Journal of Geophysical Reserach Space Physics, vol. 83, no. A6, pp. 2637-2646,
1978.

[10] European Space Agency, “Space debris by the numbers,” 12 September 2023. [Online].
Available: https://www.esa.int/Space_Safety/Space_Debris/Space_debris_by_the_numbers.
[Accessed 20 September 2023].

[11] D. Atkinson, S. Chien and E. Mjolsness, “APPLICATIONS OF ARTIFICIAL INTELLIGENCE
FOR SPACECRAFT AUTONOMY AND ENHANCED SCIENCE DATA RETURN,” in AIAA
Space 2000 Conference & Exposition, Long Beach, CA, 2000.

[12] T. Rupp, S. D'Amico, O. Montenbruck and E. Gill, “AUTONOMOUS FORMATION FLYING
AT DLR’S GERMAN SPACE OPERATIONS CENTER (GSOC),” N-A, pp. 1-1, N-A.

Research Report. Jeremy Bloor | Jay Dickson 13

[13] S. D’Amico, Autonomous Formation Flying in Low Earth Orbit, Ridderprint BV, 2010.

[14] F. Bauer, K. Hartman, J. How, J. Bristow, D. Weidow and F. Busse, “Enabling Spacecraft
Formation Flying through Spaceborne GPS and Enhanced Automation Technologies,” in 1999
ION-GPS Conference, Nashville,, 1999.

[15] K. Doshi, “Reinforcement Learning Made Simple (Part 2): Solution Approaches,” Medium, 24
October 2020. [Online]. Available: https://towardsdatascience.com/reinforcement-learning-
made-simple-part-2-solution-approaches-7e37cbf2334e. [Accessed October 2023].

[16] TF-Agent Authors, “Introduction to RL and Deep Q Networks,” TensorFlow, 26 September
2023. [Online]. Available: https://www.tensorflow.org/agents/tutorials/0_intro_rl. [Accessed
October 2023].

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra and M. Riedmiller,
“Playing Atari with Deep Reinforcement Learning,” in NIPS Deep Learning Workshop 2013,
2013.

[18] K. Doshi, “Reinforcement Learning Explained Visually (Part 4): Q Learning, step-by-step,”
Medium, 28 November 2020. [Online]. Available:
https://towardsdatascience.com/reinforcement-learning-explained-visually-part-4-q-learning-
step-by-step-b65efb731d3e. [Accessed October 2023].

[19] K. Doshi, “Reinforcement Learning Explained Visually (Part 5): Deep Q Networks, step-by-
step,” Medium, 20 December 2020. [Online]. Available:
https://towardsdatascience.com/reinforcement-learning-explained-visually-part-5-deep-q-
networks-step-by-step-5a5317197f4b. [Accessed October 2023].

[20] P. Oche, G. Ewa and N. Ibekwe, “Applications and Challenges of Artificial Intelligence in
Space Missions,” IEEE Access, pp. 1-1, 2020.

[21] Y. Sanz, J. de Lope and J. Antonio Martín H, “Applying Reinforcement Learning to Multi-robot
Team Coordination,” in Third International Worshop HAIS, Burgos, 2008.

