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Executive Summary 
The focus of this project is to effectively manage Distributed Satellite Systems (DSS) in Low Earth 
Orbit (LEO) using Artificial Intelligence (AI) algorithms such as Deep Q-Learning Networks (DQN) 
to achieve a mission. The aim of this project is to access the feasibility of using DQN for autonomous 
management of DSS in a simulated environment. Therefore, the objectives of the project are to create 
a DQN agent that can independently follow a leader satellite and avoid hazards in a two-dimensional 
environment.  

Python was chosen as the programming language to code and train the model as it has powerful 
libraries tailored for AI creation. A detailed literature review and methodology were carried out to 
ensure the project took an informed approach to solving the problem.  

However, several challenges and roadblocks were experienced during the completion of the project 
such as long training times and the need for large computational resources. This is due to the 
limitations introduced as the iterative coding approach was impacted by long training times and 
complication with environmental modelling. As a result, the model demonstrated a random reward 
distribution throughout training, implying no model improvement occurred.  

Following the unsuccessful completion of this project, several recommendations can be made to aid in 
further research. These are to understand the Markov Decision Processes deeper to better define the 
environment and include additional computational recourses in future projects to speed up training 
times.   
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1. Introduction 
Distributed Satellite Systems (DSS) are low Earth orbit 
(LEO) missions that consist of two or more satellites 
working together to achieve a given mission that 
would otherwise be infeasible for a traditional 
monolithic satellite. However, as LEO becomes 
increasingly congested with debris from past space 
missions and increasing numbers of smaller satellites, 
new methods of managing these interconnected 
satellite systems must be devised [1]. One method to 
address this is with improved autonomy to manage 
each satellite and groups of satellites together to better 
achieve a mission [2] [3]. An innovative technique 
commonly used for control problems in robotics comes 
from Artificial Intelligence (AI) known as Deep 
Reinforcement Learning (DRL) such as Deep Q-
Learning Networks (DQN) [4]. This combines the 
benefit of Deep Learning (DL) and Reinforcement 
Learning (RL) to achieve complex outcomes to 
complex inputs. By applying DQN to coordinating 
multiple satellites in real time, a large increase in 
capability can be achieved. The aim of this project is to 
access the feasibility of using DQN for autonomous 
management of DSS. To achieve this, the objectives of 
the project are to create a DQN agent that can act 
independently to follow a leader satellite and avoid 
obstacles. Due to the complexity, time constraints and 
computation power required to implement a DQN, no 
breakthrough results were achieved but with more time 
and resources a solution could likely be attained.  

2. Background and Literature Review 
2.1 Distributed Satellite Systems 
The space environment has begun to be transformed by 
the deployment of DSS which are replacing older, 
static monolithic satellites due to the former’s reduced 
size and weight alongside capabilities for redundancy 
and improved coverage. Many government and 
military projects are utilising constellations of ten or 
fewer satellites for missions rather than one large 
satellite. This is because larger numbers of small 
satellites can cover a greater area and are lighter and 
thus cheaper to launch into orbit. Additionally, if one 
satellite fails the mission can still be completed. These 
smaller satellites are often referred to as ‘CubeSats’ as 
they are made up of 10×10×10-cm cubes, each of 
which is dubbed a U as a measure of size. For 
example, a ‘12U’ CubeSat has a volume of 12,000cm3. 
Traditional monolithic systems are made up of several 
larger satellites such as GPS by the US government, 
Galileo by ESA and GLONASS for Russia. However, 
corporations aim to massively increase the number of 

satellites in orbit with SpaceX being the forerunner, 
currently orbiting 1,700 satellites in orbit with a 
planned constellation of 12,000 satellites. Amazon is 
also planning a constellation in the thousands and 
China’s SatNet, Guowang is planning a 13,000-
satellite constellation [1] [5] [6].  

DSS are categorised into four main categories: 
constellation, train, fractionated and federated [7]. 
Constellation or swarm systems tend to be large, 
loosely coordinated formations of satellites. An 
example of a constellation is Starlink which is operated 
by SpaceX. They manage satellites with coverage of 
the Earth’s surface used to provide internet service 
globally. Train or leader/follower arrangements 
normally are systems of five or fewer satellites where 
one satellite leads the other satellites in a particular 
orbit. Currently such strategies are used for Earth 
observation or to test reliance upon autonomous 
navigation and coordination systems such as in the 
case of NASA’s Starling constellation [8]. Fractionated 
systems are comprised of groups of satellites, each of 
which performs a different task to achieve an overall 
mission. For example, one CubeSat generates power 
and provides it to several other ‘observation’ CubeSats 
that have cameras onboard and send data to a 
‘communications’ CubeSat that has an antenna array 
which relays the data collected. Federated systems are 
groups of satellites which form in space locally to aid 
each other in achieving their goal. A method of 
organising federated systems is via a ‘market’ amongst 
them used to place ‘wagers’ to determine which can do 
what at different time intervals.  

2.2 Resident Space Objects 
Resident Space Objects (RSOs) are objects in the 
space environment. They include operational satellites, 
derelict satellites, and natural or artificial debris from 
past space missions and asteroids. As the number of 
operational satellites grows, so too does the risk of an 
accident. SpaceX filed a report in June 2023 with the 
United States Federal Communications Commission 
(FCC) claiming that 25,000 manoeuvrers were 
conducted across their Starlink constellation to avoid a 
collision [1]. The risk of collision exponentially grows 
as across time as more satellites are added LEO.  

If RSOs of sufficient size collide, a cascade of further 
collisions could occur. This effect is known as Kessler 
Syndrome. The effect of such a cascade event could 
limit Earth operations for hundreds of years. The 
Kessler syndrome is named after NASA scientist 
Donald Kessler who predicted a possible scenario in 
LEO whereby the amount of debris accumulates 
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quicker than atmospheric drag can deorbit the objects 
[5] [9]. RSO debris range in size and number from 
36,500 objects 10 cm wide to 130 million pieces 1 cm 
or smaller [10]. Due to the speeds that these objects 
circle the Earth, the potential for damage is high for 
satellites of any size. Clean-up efforts are limited in 
scope and scale as the objects left in space are owned 
by the country that left them there limiting cross nation 
efforts.  

2.3 Coordination and Collision 
As large numbers of satellites are deployed, they must 
also be controlled and managed to avoid hazards and 
to reposition to better achieve their given mission. 
Currently human operators comprise the main check if 
a satellite system will collide with RSOs based off US 
government data such as SpaceTrack. A possible future 
solution is system autonomy used to locally track and 
coordinate avoidance of debris via onboard sensors 
before relaying the orbit change information to a 
ground station. This autonomy would allow for quicker 
response times from multiple satellites that are part of 
a constellation and relieve the coordination capacity 
needed on the ground.  

Partial low-level autonomy is included in most space 
systems due to bandwidth limitations and 
communication delays [11] [12]. Cramer, et al., in [8] 
outline when it is prudent to apply autonomous 
systems. They clarify that response time; performance 
improvement and risk awareness are significant 
considerations when choosing to implement autonomy. 
Araguz, et al., in [7] outline the key issues that 
autonomy can solve. They list mission robustness and 
tolerance to failures, improved data return, reduced 
visibility, and communication delays. All are 
significant considerations in the deployment of DSS 
formations and as such the application of robust 
autonomy is of paramount importance if they are to 
succeed at scale. 

2.4 Deep-Q Network 
To achieve the task of locally computing trajectories 
and repositioning, AI could be used. AI systems have 
progressed at a rapid rate in recent years, allowing for 
algorithms that can handle complex environments and 
produce complex actions as a response. Satellite 
formations are comprised of multiple individual 
satellites so the problem can be considered multi-agent 
[13] [14]. 

In the realm of satellite control and AI, there is a 
growing interest in leveraging AI techniques, notably 
RL, to facilitate the coordination of multiple satellites. 

RL is recognized for its capacity to train agents 
through a reward-based system, making it particularly 
relevant for complex control scenarios where satellites 
must interact with their environment  [4]. One 
prominent approach within RL is Q-learning, which 
employs a lookup table and the Bellman equation [15] 
to make decisions based on the input states [16] [17]. 
The use of the Bellman equation allows for an estimate 
of the best action given a set of environmental 
parameters [18]. This process is expanded with DL, 
which replaces the table with a neural network 
expanding the number of state variables it can handle 
[4]. 

Within the training process, the concept of exploration 
vs exploitation plays a pivotal role, this is represented 
through the hyperparameter “epsilon” [2]. Higher 
epsilon values encourage agents to explore their 
environments by taking more random actions, while 
lower values prompt agents to exploit known pathways 
[2]. As epsilon decreases the training continues and so 
the agent explores less. The rate at which epsilon 
decreases is determined by a decaying exponential 
function that decreases each training cycle (episode). 

To determine if training is completed, a ‘loss’ value is 
calculated. Loss is the measure of how close the 
predicted reward is to the actual reward gained [15] 
[19]. At the beginning of training the loss is high as the 
predicted rewards is far from the expected outcome but 
as training progresses, loss reduces. A common method 
for determining loss is the mean squared error function 
which uses the average squared difference between the 
predicted reward value and the actual reward value to 
qualitatively find the difference. Another commonly 
used method is the Huber Loss which is less 
influenced by outliers and so can be a better solution in 
some cases. 

In a bid to enhance the stability of results achieved 
through DQNs, the concept of Double Deep Q-
Networks (DDQNs) has been introduced. DDQNs 
utilize a secondary target network to assess Q-values 
before the primary Q-network's weights are updated, a 
strategy aimed at achieving more consistent and 
reliable results [4]. The target network is updated 
strategically at later stages in the training process, 
avoiding premature influence on the primary network. 

2.5 Gap Analysis 
The research completed in the field of LEO systems 
utilising autonomy is only part way in applying current 
and newly developed research from the field of AI. 
Many space missions conducted beyond Earth’s orbit 
utilise lower-level autonomy such as the Voyager 
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probe. However, these autonomous tasks primarily 
entail simple, pre-planned tasks. Deep space 
essentially empty and so mostly static, while the LEO 
environment is continually changing. Therefore, past 
autonomy methods, while useful must be built upon to 
tackle the LEO environment. For DSS to be successful 
and to scale effectively, autonomy must be created for 
each unit and between each unit to allow the system to 
function [20]. This will achieve a newer level 
autonomy. However, several conditions must be 
considered before better autonomy can be achieved: 
communication, collisions, and manoeuvring.  

Herein focus primarily on the coordination to avoid 
debris and to better achieve the ongoing mission via 
manoeuvring. While communication between satellites 
and the ground stations is important, this is a sperate 
problem and so is not considered in this report. RSOs 
pose a large threat to DSS operations due to the ever-
increasing number of new satellites, continuous levels 
of derelict satellites, debris and currently operating 
satellites. Manoeuvring multiple satellites in a timely 
manner while still achieving continuous operations for 
the required task would allow for a large leap forward 
in operational capability. For EO as an example, a 
phenomenon might be of interest in a different orbit 
trajectory, either inclination or azimuth, requiring the 
formation to reposition so it can collect data. As 
bushfires become a larger issue due to climate change, 
the tools available to monitor developing situations at a 
quicker rate will in turn allow quicker responses from 
emergency services. Developing autonomy to achieve 
this complex task for repositioning satellites while still 
in orbit will advance satellite capabilities dramatically 
while also saving time and cost by removing the need 
for additional satellites [3].  

While AI has developed to a high capability for new 
and emerging problems, fewer applications have been 
made in the environment of space. Primarily RL has 
been used to simulate orbit manoeuvres but has not 
been used to control large systems of CubeSats [21]. 
This is due in part to the long training times required 
for RL and the large state spaces characteristic of DSS 
in LEO. DSS can be classes as a multi-agent problem 
due to the interaction of multiple ‘agents. Xie et al [4] 
demonstrates the use of DQN to solve this multi-agent 
problem by considering them in pair wise 
relationships. This reduces the computation time by 
considering the problem piece wise as well as using 
DL to make use of larger input states. Furthermore, 
Xie et al [4] demonstrates a target zone that the agent 
should aim for with a threat zone for the agent to 
avoid. By utilising the target zone, the agent can follow 

another agent at a distance and avoid obstacles that 
move into its threat zone. By applying DQN to DSS 
the issue of large inputs states and larger orbital 
systems can be addressed.  

2.6 Objectives 
The main objectives of this project are to: 

1. Create a DQL Agent that can act 
independently to follow a leader node at a set 
distance and angle. 

2. Have the Agent avoid obstacles and other 
hazards efficiently. 

3. Show that a collection of Agents can act to 
optimise a formation of satellites while 
performing autonomous tasks. 

4. Allow the formation to be managed through 
ground commands. 

 
For DSS to be effective, the agents need to coordinate, 
avoid collisions, and complete tasks. The agent needs 
input data from the environment which it can then use 
to learn how it should act towards achieve its goal. 
Using this environmental data, the agent can be trained 
to avoid certain objects such as debris and to follow 
objects such as the lead satellite. By combining all 
these attributes, a satellite system should be able to act 
autonomously in a simulated environment to achieve a 
given mission.  

3. Methodology 
3.1. Overview 
This section presents the methodology for 
implementing a DDQN algorithm tailored for the 
purpose of formation control and obstacle avoidance in 
multi-agent satellite systems. The following 
subsections detail the problem formulation, algorithm 
design, and simulation environment setup. 

Fundamentally, the method is based around the theory 
of Markov Decision Processes. This academic area 
provides a framework to develop the most significant 
parameters needed for Deep Q-Learning such as the 
state space, action space and reward structure. 

3.2. Problem Formulation 
3.2.1. State Representation 

The model's state representation consists of all the 
information the agent will have at a given step to make 
decisions with.  

The information comes from the environment, which 
for any given episode will contain the agent which is 
dynamic as well as the target and a single obstacle, 
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these are stationary and randomly initialized randomly 
at the start of each episode. The state space for the 
model is defined as follows: 

! = #$! , &! , '"! , '#! , $$, &$(
!, 

Equation 1 - State Space of the Model 

where !!, "! are the relative position of the agent with 
respect to the target, #"!, #"! which is the relative 
velocity of the agent with respect to the target and !#, 
"# which is the relative position of the agent with 
respect to the obstacle. This state is updated for each 
time step (t) in the episode. 

3.2.2. Action Space 

The action space represents the possible choices the 
model can make at a given time step. This is a discrete 
representation of the possible actions. 

This is determined based upon the agent's discrete 
kinematic equation combined with the obstacles. The 
complete kinematic equation is defined below: 
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⎥
⎤
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Equation 2 - Kinematic Equation 

Given this structure the action space is defined as: 

 3 = 41$, 1&6 ∈
[0,0], [−2,0], [−1,0], [1,0], [2,0], [0, −2], [0, −1], [0,1], [0,2], 

Equation 3 - Action Space 

 where $", $$ is the formation control command. 

3.2.3. Reward Structure 

The reward function serves to track the "value" of a 
given state. The actual value is somewhat irrelevant 
with the significance being how it changes over time. 
The reward ensures that the agent gets feedback on its 
actions and can thus optimize its performance. 

The model relies on a reshaped reward function. This 
is to say that it not only gets rewarded for the outcome 
of a given episode but is also rewarded continuously 
throughout the episode. This is done to ensure the 
reward is not sparse and that the model has an idea of 
how a given action-state pair performs. This is 
essential during the learning process. 

 

 

 

The reward function for outcomes is defined below: 

<(>) = @
2, if finish
−2, if collision
−2, if out of range
0, otherwise

  

Equation 4 - Objective Reward Function 

and the reward function for the sparse rewards: 

!(#, %, #′) = )
−+,(#′) + ,(#), if ,! > 20safe
−+,(#′) + ,(#) + +,!(#′), if ,! > 20safe
−,!(#) + 2(1 − +)0safe, if ,! ≤ 20safe

 

Equation 5 - Sparse Reward Function 

where, % is the state at step &, ' is the action at step t 
and %′ is the state at step & + 1. The coefficients + and 
,%&'( describe the value placed on future rewards and 
the safe distance to the target respectively. Finally, the 
functions -(%), -(%′), -)(%) and -)(%′) represent the 
agent’s relative position to the target and its relative 
position to the obstacle. This is determined for the 
current step and the next step. 

The two functions together allow for the calculation of 
the total reward for a given step. 

3.3. Double Deep Q-Network (DDQN) Design 
3.3.1 Network Architecture 

The network structure is designed so that it can 
manage the complexities of the problem. The model 
has a total of five layers. One input, one output and 3 
dense fully connected layers. 

Input (State size: 6)
∘ ∘ ∘ ∘ ∘ ∘
↓ ↓ ↓ ↓ ↓ ↓

Hidden Layer 1 (256 nodes) (Tanh)
∘ ∘ ∘ ⋯

↓ ↓ ↓ ↓ ↓ ↓
Hidden Layer 2 (256 nodes) (Tanh)

∘ ∘ ∘ ⋯
↓ ↓ ↓ ↓ ↓ ↓

Hidden Layer 3 (128 nodes) (Tanh)
∘ ∘ ∘ ⋯

↓ ↓ ↓ ↓ ↓ ↓
Output Layer (Action size: 9) (Linear)

∘ ∘ ∘ ∘ ∘ ∘ ∘ ∘

 

Figure 1: Neural network architecture of the Double Deep-Q Learning 
model 

3.3.2 Learning Algorithm 
3.3.2.1 Experience Replay 
Experience replay is an integral mechanism in DQN 
that enhances both data efficiency and training 
stability. The algorithm stores tuples of past 
experiences, including state, action, reward, next state, 
and a 'done' flag, in a replay buffer. During the training 
process, mini-batches of these stored experiences are 
randomly sampled to update the Q-values. This 
approach serves two primary purposes: it increases 
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data efficiency by reusing each experience for multiple 
updates, and it enhances stability by breaking the 
temporal correlation in the sequence of observations 
meaning that the agent isn’t trained too narrowly on 
data as further steps are based on previous steps.  

3.3.2.2 Target Network Updates 
To further stabilize the training process, DQN employs 
the concept of a target network. This network is 
essentially a clone of the primary Q-network but is 
updated less frequently. By using the target network to 
provide a more stable and consistent goal for Q-value 
updates, the overall stability of the training process is 
enhanced. 

3.3.2.3 The Bellman Equation 
DDQN improves upon DQN by employing a double 
Q-learning technique to reduce the overestimation bias 
associated with Q-value estimates. In DDQN, the 
action that maximizes the Q-value is selected by the 
primary network, but the evaluation of its Q-value is 
performed by the target network. The updated Q-value 
is calculated using the Bellman equation: 

Target = < + E ⋅ Gtarget HI(, argmax)Gprimary(I(, 3)J 

Equation 6 - Bellman Equation 

In this equation, the Target represents the goal for the 
Q-value to update to. R is the immediate reward, + is 
the discount factor that modulates the influence of 
future rewards, and s' is the next state. 

3.3.2.4 Optimization Techniques 

The network parameters are updated using the Adam 
variant of gradient descent. Adam is favoured for its 
adaptive learning rate capabilities, which are 
particularly beneficial for navigating the high-
dimensional parameter spaces encountered in DQN 
models. 

3.3.3 Hyperparameters 

3.4 Simulation Environment Setup 
3.4.1 Satellite Models 

The simulation is based on a simplified two-
dimensional Cartesian coordinate system, focusing 
primarily on the kinematic aspects of satellite motion. 
This planar model allows for the simulation of a flat 
orbit around a central gravitational body, serving as a 
computationally efficient approximation for satellite 
behaviour. 

3.4.2 Scenario Configuration 

The model focuses on scenarios involving a single 
satellite agent, which is tasked with maintaining 
formation with a leader node while avoiding space 
debris. The leader node serves as a reference point, and 
the agent's objective is to maintain its relative position 
to this leader as seen in Figure 2 below. 

 
Figure 2: DSS configuration 

In each scenario, there are two primary entities: the 
agent satellite and the leader node. Both satellites have 
predefined initial positions and velocities. The leader 
node follows a predefined trajectory, which the agent 
satellite aims to mirror while avoiding obstacles. 

The primary focus is on maintaining a specific 
formation with the leader node, typically defined by a 
set distance and angle relative to the leader's position. 
The agent uses its control mechanisms or actions to 
adjust its position and velocity to achieve and maintain 
this formation. 

Stationary space debris serves as the main type of 
obstacle in these scenarios. Given the two-dimensional 
nature of the model, the debris is represented as a 
circle within the orbital plane, which the agent must 
navigate around. 

HYPERPARAMETER VALUE DESCRIPTION 
 
GAMMA 

0.95 The discount factor used to balance immediate and future rewards. 
Values range from 0 to 1. A high value like 0.95 emphasizes the 
importance of long-term rewards. 

 
EPSILON 

1 Initial exploration rate. This determines the likelihood of taking a 
random action. A value of 1 means the agent will always explore 
initially. 

 
EPSILON MIN 

0.01 Minimum exploration rate. As learning progresses, epsilon  
decreases but won't go below this value. This ensures some level of 
exploration continues. 

EPSILON DECAY 
RATE 

10 Number of episodes to decay epsilon. This sets how often the 
exploration rate will be updated. 

 
EPSILON DECAY 

0.01 The value epsilon  decays by. This is a small value to gradually 
decrease the exploration rate. 

 
LEARNING RATE 

0.01 The learning rate used in the Q-learning update. It determines the 
weight given to new updates. 

 
NETWORK 
REPLACE 

2000 Number of steps before replacing the target network. The target 
network is updated to match the weights of the main Q-network 
every N replace  steps. 

 
BATCH SIZE 

32 The number of experience samples from the replay memory that are 
used for training the Q-network in each iteration. 

 
MEMORY 

100000 
(max length) 

A deque data structure with a maximum length of 100000. It is used 
for experience replay, storing tuples of (state, action, reward, 
next_state, done) for training. 
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Figure 3: Training configuration 

3.4.3 Evaluation Metrics 

The primary metrics used for evaluating the 
performance of the Deep Q-Network (DQN) model in 
managing the satellite formation are loss and reward 
values. These metrics serve as indicators of how well 
the satellite agent is learning to achieve its objectives, 
which include maintaining a specific formation with 
the leader node and avoiding obstacles like space 
debris. 

3.4.3.1 Loss Values 

The loss values represent the difference between the 
Q-values predicted by the DQN and the actual Q-
values calculated based on rewards received and future 
state estimates. A decrease in the loss value over time 
suggests that the model is learning to better 
approximate the optimal Q-function. Monitoring loss 
values is crucial for understanding how well the neural 
network is being trained to estimate future rewards. 

3.4.3.2 Reward Values 

The reward values indicate the immediate benefit the 
agent receives from taking specific actions in 
particular states. The rewards are designed to reflect 
real-world objectives, such as maintaining a specific 
distance and angle relative to the leader node and 
avoiding collision with obstacles. An increase in the 
cumulative reward over time implies that the agent is 
learning to take more optimal actions to meet its 
objectives. 

3.5 Experimental Setup 

To achieve the objectives, a range of software tools 
and cloud-based computing resources was utilized. 
Python was selected as the primary programming 
language because of its wide-ranging applications in 
both machine learning and scientific research. This 
language provided the foundational base for the 
computational tasks. Building upon this, TensorFlow 
was employed as the machine learning framework. 
TensorFlow was ideal for constructing and training the 

DQN model due to its highly optimized libraries 
tailored for machine learning tasks. 

For the visualization aspect of the experiment, Pygame 
was chosen for rendering the training visuals. This 
allowed for the effectively display of the environment 
in which the satellites operated, providing valuable 
visual feedback. In addition, NumPy was used for 
several numerical computations and data manipulation 
tasks. 

All simulations and training processes were executed 
on Paperspace, a cloud computing platform known for 
its high-performance capabilities. This service allowed 
the models to run through Jupyter Notebooks and gave 
access to GPUs and memory capacity that would not 
have been accessible otherwise. 

4. Scope and limitations 
The main constraints of the project were time and 
computational resources. Running the model on cloud-
based infrastructure took approximately 30 hours, and 
the duration was even longer when using personal 
devices for testing, as the aim was to minimise cloud-
computing costs. These time constraints hindered 
progression due to the inability to engage in iterative 
problem-solving effectively making the 
troubleshooting of implementation issues more 
challenging. 

Additionally, due to these limitations, the scope of the 
project was narrowed to focus only on a 2D 
environment with a single agent. While this 
simplification enabled progress to occur, it also posed 
limitations on the applicability of the findings. 
Specifically, the reduced scope doesn't fully capture 
the complexities of orbital dynamics, which could 
impact the generalisability of the model to real-world, 
three-dimensional space scenarios. 

5. Results 
The project faced challenges in gaining momentum, 
primarily due to the realisation that many of the initial 
approaches were either unfeasible or too complex to 
implement within the constraints. As it stands, the 
project did not yield a viable model for satellite 
formation control using Deep Q-Learning. The 
statistical analysis underscored this outcome with the 
reward for the most recent model returning a P-value 
of approximately 1, this indicates that the data was 
randomly distributed. This suggests that the model did 
not learn any meaningful pattern or strategy for 
achieving its objectives, casting doubt on its current 
effectiveness and applicability. 
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Figure 4: Reward progress for each episode 

The reward graph represents the cumulative reward 
gained per training cycle or episode as seen in Figure 
4. Each episode the reward gained is governed by the 
reward function outlined in reward function equation. 
This function maps the actions in the environment to 
rewards or penalisations and should trend upwards to 
show that the agent is improving at accumulating more 
reward with some variation. However here it is flat 
meaning the agent didn’t learn anything meaningful.   

 
Figure 5: Loss for each episode 

The loss function represents the model's accuracy. It is 
evaluated based on comparing the prediction the model 
makes with the actual result. This is calculated with the 
mean squared error function which uses the average 
squared difference between the predicted reward value 
and the actual reward value to determine the loss. 

6. Discussion 
This project did not determine whether DQL can serve 
as a viable method for autonomous satellite 
management. Overall, the approaches taken early in 
the project were not viable. As iteration is difficult to 
do regularly, evaluating how inefficiencies were being 
introduced was problematic. A balance was struck 
between changing a small enough set of variables to 
identify which one of them caused the problem, while 
also reducing the number of times the full model had 
to be run. This proved to be one of the most difficult 
parts of troubleshooting. 

Since concluding this project, several errors have been 
identified in the implementation. One of which is that 
the action values were not correctly implemented. 
These values are meant to be passed into the kinematic 
equation to then determine the agent's movement but 
were instead represented as velocity pairs. The near 
perfect distribution of the reward values also implies 
that the model is not correctly acting on its model. 
Possibly a result of the action value mishap but it could 

also be a separate error that was never identified, as 
this issue seemed to have been the main prevailing 
problem, even during separate tests with a different 
model. 

The results clearly show no improvement in the 
model's performance. All prior models also notably 
performed worse than the newest model. This implies 
that the most recent approach was improving the 
performance but had yet to be implemented fully. 

The results would show an increase in the reward and a 
drop in the loss if the model was improving. This is not 
seen and so it can be concluded that the model did not 
learn well. 

Overall, the results do not support the outlined 
hypothesis that DQL can serve as a viable method for 
distributed satellite management. 

7. Recommendations 
Moving forward, several actionable recommendations 
can be made that can significantly expedite progress in 
this research area. 

Firstly, diving deeper into the fundamentals of Markov 
Decision Processes is highly recommended. This 
framework provides a systematic, mathematically 
rigorous way to define state space, action space, and 
reward function, focusing on this avenue will ensure 
the model is well defined. 

Further, caution should be taken when contemplating 
an increase in environmental complexity. While this 
may seem like a logical step for improving the model, 
it could exponentially amplify the number of state 
variables, adding complexity that may become 
unmanageable. Any increase in complexity would also 
necessitate a thorough re-evaluation of the associated 
Markov Decision Process to adapt it to the new set of 
kinematic conditions. 

Finally, investing in more powerful computational 
resources should be a priority, as it will accelerate both 
the development and validation processes. This is due 
to most of the work revolving around the need to 
develop and train neural networks. These networks are 
complex and time consuming to develop. Initially it 
was assumed that such recourses were freely available 
and ready to be used but these resources were limited 
for use by postgraduate students. The solution was to 
run the model on the cloud-computing platform 
Paperspace, this however involved a monetary cost. 
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8. Conclusion 
In summary, despite encountering various challenges and ultimately not achieving success in the project, the 
knowledge gained, and suggestions put forward serve as a valuable starting point for future research. Most importantly 
concentrating on the theoretical aspects of Markov Decision Processes, which can lead to the development of robust 
and precisely defined models. Additionally, prioritizing computational resources and optimizing the model's 
exploration in complex environments is crucial. Although this area presents numerous difficulties, it also presents 
significant opportunities for making meaningful advancements. Through the insights highlighted, a worthwhile 
contribution has been made to the ongoing and future investigations in this field. 
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